arXiv Analytics

Sign in

arXiv:1305.0226 [math.FA]AbstractReferencesReviewsResources

Hardy's type inequality for the over critical exponent associated with the Dunkl transform

Rahmouni Atef

Published 2013-05-01Version 1

\begin{abstract} For the Hardy space $H^p(\mathbb{R}^{d})$, $ 0<p\leq 1,$ we shall improve a Hardy's type inequality associated with Dunkl transform respect to the measures $d\mu_{k}$ homogeneous of degree $\gamma ,$ on the strip $(2\gamma+d)(2-p)\leq\sigma<2\gamma+d+p(N+1),$ where $N =[(2\gamma+d)(1/p-1)]$ is the greatest integer not exceeding $(2\gamma+d)(1/ p -1).$ \end{abstract}

Related articles: Most relevant | Search more
arXiv:math/0207142 [math.FA] (Published 2002-07-17)
Non-MSF wavelets for the Hardy space H^2(\R)
arXiv:1505.07935 [math.FA] (Published 2015-05-29)
Approximation numbers of composition operators on the Hardy space of the ball and of the polydisk
arXiv:1011.3947 [math.FA] (Published 2010-11-17, updated 2011-01-26)
Covariant Transform