arXiv:2311.15245 [math.FA]AbstractReferencesReviewsResources
The Cesaro Operator in $\ell^{2}$ is Essentially Normal
Published 2023-11-26Version 1
In this paper we prove that the Cesaro operator $\mathcal{C}$ in $\ell^{2}$, the Hilbert space of square summable sequences, is essentially normal, i.e. the commutator $[\mathcal{C}^{\ast},\mathcal{C}]:=\mathcal{C}^{\ast}\mathcal{C}-\mathcal{C}\mathcal{C}^{\ast}$ is a compact operator on $\ell^{2}$.
Comments: 6 pages
Categories: math.FA
Related articles: Most relevant | Search more
arXiv:1504.05242 [math.FA] (Published 2015-04-20)
Criterion for $\mathbb{Z}_d$--symmetry of a Spectrum of a Compact Operator
arXiv:2210.08091 [math.FA] (Published 2022-10-14)
The Cesaro operator
arXiv:2406.05556 [math.FA] (Published 2024-06-08)
Entropy of Compact Operators with Applications to Landau-Pollak-Slepian Theory and Sobolev Spaces