arXiv Analytics

Sign in

arXiv:1504.05242 [math.FA]AbstractReferencesReviewsResources

Criterion for $\mathbb{Z}_d$--symmetry of a Spectrum of a Compact Operator

Boris S. Mityagin

Published 2015-04-20Version 1

If $A$ is a compact operator in a Banach space and some power $A^q$ is nuclear we give a criterion of $\mathbb{Z}_{d}$ -- symmetry of its spectrum $\sigma{A}$ in terms of vanishing of the traces $\mathop{\mathit{Trace}} A^n$ for all $n$, $n \geq 0$, $n \neq 0 \mod d$, sufficiently large.

Comments: 11 pages, no figures
Categories: math.FA, math.SP
Subjects: 47B10, 47B07, 47B40
Related articles: Most relevant | Search more
arXiv:math/0206112 [math.FA] (Published 2002-06-11)
On factorization of operators between Banach spaces
arXiv:math/0610421 [math.FA] (Published 2006-10-12)
Smooth norms and approximation in Banach spaces of the type C(K)
arXiv:math/0412171 [math.FA] (Published 2004-12-08)
Embedding $\ell_{\infty}$ into the space of all Operators on Certain Banach Spaces