{ "id": "2311.15245", "version": "v1", "published": "2023-11-26T09:16:22.000Z", "updated": "2023-11-26T09:16:22.000Z", "title": "The Cesaro Operator in $\\ell^{2}$ is Essentially Normal", "authors": [ "Uğur Gül" ], "comment": "6 pages", "categories": [ "math.FA" ], "abstract": "In this paper we prove that the Cesaro operator $\\mathcal{C}$ in $\\ell^{2}$, the Hilbert space of square summable sequences, is essentially normal, i.e. the commutator $[\\mathcal{C}^{\\ast},\\mathcal{C}]:=\\mathcal{C}^{\\ast}\\mathcal{C}-\\mathcal{C}\\mathcal{C}^{\\ast}$ is a compact operator on $\\ell^{2}$.", "revisions": [ { "version": "v1", "updated": "2023-11-26T09:16:22.000Z" } ], "analyses": { "keywords": [ "cesaro operator", "essentially normal", "square summable sequences", "compact operator" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable" } } }