arXiv:2305.07925 [math.DS]AbstractReferencesReviewsResources
Symmetric cubic polynomials
A. Blokh, L. Oversteegen, N. Selinger, V. Timorin, S. Vejandla
Published 2023-05-13Version 1
We describe a model $\mathcal{M}_3^{comb}$ for the boundary of the connectedness locus $\mathcal{M}^{sy}_3$ of the parameter space of cubic symmetric polynomials $p_c(z)=z^3-3c^2z$. We show that there exists a monotone continuous function $\pi:\partial \mathcal{M}_c^{sy}\to \mathcal{M}_3^{comb}$ which is a homeomorphism if $\mathcal{M}^{sy}_3$ is locally connected.
Comments: 34 pages, 3 figures
Categories: math.DS
Related articles: Most relevant | Search more
arXiv:2205.04994 [math.DS] (Published 2022-05-10)
Relations between Escape Regions in the Parameter Space of Cubic Polynomials
arXiv:2202.06734 [math.DS] (Published 2022-02-14)
Lavaurs algorithm for cubic symmetric polynomials
arXiv:1609.02240 [math.DS] (Published 2016-09-08)
Slices of Parameter Space of Cubic Polynomials