arXiv Analytics

Sign in

arXiv:1609.02240 [math.DS]AbstractReferencesReviewsResources

Slices of Parameter Space of Cubic Polynomials

Alexander Blokh, Lex Oversteegen, Vladlen Timorin

Published 2016-09-08Version 1

In this paper, we study slices of the parameter space of cubic polynomials, up to affine conjugacy, given by a fixed value of the multiplier at a non-repelling fixed point. In particular, we study the location of the $main\, cubioid$ in this parameter space. The $main\, cubioid$ is the set of affine conjugacy classes of complex cubic polynomials that have certain dynamical properties generalizing those of polynomials $z^2+c$ for $c$ in the filled main cardioid.

Comments: 60 pages, 3 figures
Categories: math.DS
Subjects: 37F20
Related articles: Most relevant | Search more
arXiv:2205.04994 [math.DS] (Published 2022-05-10)
Relations between Escape Regions in the Parameter Space of Cubic Polynomials
arXiv:math/0605687 [math.DS] (Published 2006-05-26)
Cubic polynomials: a measurable view on parameter space
arXiv:1611.10111 [math.DS] (Published 2016-11-30)
The dimension of irregular set in parameter space