{ "id": "2305.07925", "version": "v1", "published": "2023-05-13T14:36:37.000Z", "updated": "2023-05-13T14:36:37.000Z", "title": "Symmetric cubic polynomials", "authors": [ "A. Blokh", "L. Oversteegen", "N. Selinger", "V. Timorin", "S. Vejandla" ], "comment": "34 pages, 3 figures", "categories": [ "math.DS" ], "abstract": "We describe a model $\\mathcal{M}_3^{comb}$ for the boundary of the connectedness locus $\\mathcal{M}^{sy}_3$ of the parameter space of cubic symmetric polynomials $p_c(z)=z^3-3c^2z$. We show that there exists a monotone continuous function $\\pi:\\partial \\mathcal{M}_c^{sy}\\to \\mathcal{M}_3^{comb}$ which is a homeomorphism if $\\mathcal{M}^{sy}_3$ is locally connected.", "revisions": [ { "version": "v1", "updated": "2023-05-13T14:36:37.000Z" } ], "analyses": { "subjects": [ "37F20", "37F10" ], "keywords": [ "symmetric cubic polynomials", "cubic symmetric polynomials", "connectedness locus", "parameter space", "monotone continuous function" ], "note": { "typesetting": "TeX", "pages": 34, "language": "en", "license": "arXiv", "status": "editable" } } }