arXiv:2304.01092 [math.CA]AbstractReferencesReviewsResources
The Proof of restriction conjecture In $\mathbb{R}^{3}$
Published 2023-04-03Version 1
If S is a smooth compact surface in $\mathbb{R}^{3}$ with strictly positive second fundamental form, and $E_S$ is the corresponding extension operator, then we prove that for all $p > 3$, $\left\|E_S f\right\|_{L^p\left(\mathbb{R}^3\right)} \leq C(p, S)\|f\|_{L^{\infty}(S)}.$ The proof of restriction conjecture in $\mathbb{R}^{3}$ implies that Kakeya set conjecture is true when n=3.
Comments: 17 pages
Categories: math.CA
Related articles: Most relevant | Search more
arXiv:math/0311181 [math.CA] (Published 2003-11-12)
Recent progress on the restriction conjecture
arXiv:math/0303136 [math.CA] (Published 2003-03-12)
Some recent progress on the Restriction conjecture
A restriction estimate using polynomial partitioning