arXiv:1407.1916 [math.CA]AbstractReferencesReviewsResources
A restriction estimate using polynomial partitioning
Published 2014-07-08, updated 2015-02-02Version 3
If $S$ is a smooth compact surface in $\mathbb{R}^3$ with strictly positive second fundamental form, and $E_S$ is the corresponding extension operator, then we prove that for all $p > 3.25$, $\| E_S f\|_{L^p(\mathbb{R}^3)} \le C(p,S) \| f \|_{L^\infty(S)}$. The proof uses polynomial partitioning arguments from incidence geometry.
Comments: 42 pages. Minor revisions. Accepted for publication in JAMS
Categories: math.CA
Related articles: Most relevant | Search more
arXiv:1510.00506 [math.CA] (Published 2015-10-02)
Improved restriction estimate for hyperbolic surfaces in R3
arXiv:1802.04312 [math.CA] (Published 2018-02-12)
A restriction estimate in $\mathbb{R}^3$ using brooms
arXiv:1806.11387 [math.CA] (Published 2018-06-29)
On restriction estimates for spheres in finite fields