{ "id": "1407.1916", "version": "v3", "published": "2014-07-08T00:42:27.000Z", "updated": "2015-02-02T22:43:53.000Z", "title": "A restriction estimate using polynomial partitioning", "authors": [ "Larry Guth" ], "comment": "42 pages. Minor revisions. Accepted for publication in JAMS", "categories": [ "math.CA" ], "abstract": "If $S$ is a smooth compact surface in $\\mathbb{R}^3$ with strictly positive second fundamental form, and $E_S$ is the corresponding extension operator, then we prove that for all $p > 3.25$, $\\| E_S f\\|_{L^p(\\mathbb{R}^3)} \\le C(p,S) \\| f \\|_{L^\\infty(S)}$. The proof uses polynomial partitioning arguments from incidence geometry.", "revisions": [ { "version": "v2", "updated": "2014-08-04T21:19:22.000Z", "comment": "42 pages. Reference updated", "journal": null, "doi": null }, { "version": "v3", "updated": "2015-02-02T22:43:53.000Z" } ], "analyses": { "keywords": [ "restriction estimate", "strictly positive second fundamental form", "smooth compact surface", "incidence geometry", "polynomial partitioning arguments" ], "note": { "typesetting": "TeX", "pages": 42, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1407.1916G" } } }