{ "id": "2304.01092", "version": "v1", "published": "2023-04-03T15:52:22.000Z", "updated": "2023-04-03T15:52:22.000Z", "title": "The Proof of restriction conjecture In $\\mathbb{R}^{3}$", "authors": [ "Hoyoung Song" ], "comment": "17 pages", "categories": [ "math.CA" ], "abstract": "If S is a smooth compact surface in $\\mathbb{R}^{3}$ with strictly positive second fundamental form, and $E_S$ is the corresponding extension operator, then we prove that for all $p > 3$, $\\left\\|E_S f\\right\\|_{L^p\\left(\\mathbb{R}^3\\right)} \\leq C(p, S)\\|f\\|_{L^{\\infty}(S)}.$ The proof of restriction conjecture in $\\mathbb{R}^{3}$ implies that Kakeya set conjecture is true when n=3.", "revisions": [ { "version": "v1", "updated": "2023-04-03T15:52:22.000Z" } ], "analyses": { "keywords": [ "restriction conjecture", "strictly positive second fundamental form", "smooth compact surface", "kakeya set conjecture", "corresponding extension operator" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }