arXiv Analytics

Sign in

arXiv:2303.13785 [math.NT]AbstractReferencesReviewsResources

An explicit upper bound for $L(1, χ)$ when $χ$ is quadratic

D. R. Johnston, O. Ramare, T. S. Trudgian

Published 2023-03-24Version 1

We consider Dirichlet $L$-functions $L(s, \chi)$ where $\chi$ is a non-principal quadratic character to the modulus $q$. We make explicit a result due to Pintz and Stephens by showing that $|L(1, \chi)|\leq \frac{1}{2}\log q$ for all $q\geq 2\cdot 10^{23}$ and $|L(1, \chi)|\leq \frac{9}{20}\log q$ for all $q\geq 5\cdot 10^{50}$.

Comments: 17 pages
Categories: math.NT
Subjects: 11M20
Related articles: Most relevant | Search more
arXiv:2001.05782 [math.NT] (Published 2020-01-16)
An explicit upper bound for Siegel zeros of imaginary quadratic fields
arXiv:0906.4177 [math.NT] (Published 2009-06-23)
Explicit Upper Bounds for L-functions on the critical line
arXiv:2211.11012 [math.NT] (Published 2022-11-20)
Explicit upper bounds for the number of primes simultaneously representable by any set of irreducible polynomials