arXiv:2001.05782 [math.NT]AbstractReferencesReviewsResources
An explicit upper bound for Siegel zeros of imaginary quadratic fields
Dimbinaina Ralaivaosaona, Faratiana Brice Razakarinoro
Published 2020-01-16Version 1
For any integer $d\geq 3$ such that $-d$ is a fundamental discriminant, we show that the Dirichlet $L$-function associated with the real primitive character $\chi(\cdot)=(\frac{-d}{\cdot})$ does not vanish on the positive part of the interval $[1-6.5/\sqrt{d},\ 1]. $
Related articles: Most relevant | Search more
arXiv:2303.13785 [math.NT] (Published 2023-03-24)
An explicit upper bound for $L(1, χ)$ when $χ$ is quadratic
arXiv:2308.06633 [math.NT] (Published 2023-08-12)
On the cohomology of GL_2 and SL_2 over imaginary quadratic fields
arXiv:0906.4177 [math.NT] (Published 2009-06-23)
Explicit Upper Bounds for L-functions on the critical line