{ "id": "2001.05782", "version": "v1", "published": "2020-01-16T13:14:38.000Z", "updated": "2020-01-16T13:14:38.000Z", "title": "An explicit upper bound for Siegel zeros of imaginary quadratic fields", "authors": [ "Dimbinaina Ralaivaosaona", "Faratiana Brice Razakarinoro" ], "comment": "21 pages, 2 figures", "categories": [ "math.NT" ], "abstract": "For any integer $d\\geq 3$ such that $-d$ is a fundamental discriminant, we show that the Dirichlet $L$-function associated with the real primitive character $\\chi(\\cdot)=(\\frac{-d}{\\cdot})$ does not vanish on the positive part of the interval $[1-6.5/\\sqrt{d},\\ 1]. $", "revisions": [ { "version": "v1", "updated": "2020-01-16T13:14:38.000Z" } ], "analyses": { "subjects": [ "11M20" ], "keywords": [ "explicit upper bound", "imaginary quadratic fields", "siegel zeros", "fundamental discriminant", "real primitive character" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable" } } }