{ "id": "2303.13785", "version": "v1", "published": "2023-03-24T03:52:33.000Z", "updated": "2023-03-24T03:52:33.000Z", "title": "An explicit upper bound for $L(1, χ)$ when $χ$ is quadratic", "authors": [ "D. R. Johnston", "O. Ramare", "T. S. Trudgian" ], "comment": "17 pages", "categories": [ "math.NT" ], "abstract": "We consider Dirichlet $L$-functions $L(s, \\chi)$ where $\\chi$ is a non-principal quadratic character to the modulus $q$. We make explicit a result due to Pintz and Stephens by showing that $|L(1, \\chi)|\\leq \\frac{1}{2}\\log q$ for all $q\\geq 2\\cdot 10^{23}$ and $|L(1, \\chi)|\\leq \\frac{9}{20}\\log q$ for all $q\\geq 5\\cdot 10^{50}$.", "revisions": [ { "version": "v1", "updated": "2023-03-24T03:52:33.000Z" } ], "analyses": { "subjects": [ "11M20" ], "keywords": [ "explicit upper bound", "non-principal quadratic character" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }