arXiv Analytics

Sign in

arXiv:2212.13241 [math.CO]AbstractReferencesReviewsResources

Generalized characters of the generalized symmetric group

Omar Tout

Published 2022-12-26Version 1

We prove that $(\mathbb{Z}_k \wr \mathcal{S}_n \times \mathbb{Z}_k \wr \mathcal{S}_{n-1}, \text{diag} (\mathbb{Z}_k \wr \mathcal{S}_{n-1}) )$ is a symmetric Gelfand pair, where $\mathbb{Z}_k \wr \mathcal{S}_n$ is the wreath product of the cyclic group $\mathbb{Z}_k$ with the symmetric group $\mathcal{S}_n.$ The proof is based on the study of the $\mathbb{Z}_k \wr \mathcal{S}_{n-1}$-conjugacy classes of $\mathbb{Z}_k \wr \mathcal{S}_n.$ We define the generalized characters of $\mathbb{Z}_k \wr \mathcal{S}_n$ using the zonal spherical functions of $(\mathbb{Z}_k \wr \mathcal{S}_n \times \mathbb{Z}_k \wr \mathcal{S}_{n-1}, \text{diag} (\mathbb{Z}_k \wr \mathcal{S}_{n-1}) ).$ We show that these generalized characters have properties similar to usual characters. A Murnaghan-Nakayama rule for the generalized characters of the hyperoctahedral group is presented. The generalized characters of the symmetric group were first studied by Strahov in [7].

Comments: arXiv admin note: text overlap with arXiv:1912.05294
Categories: math.CO
Subjects: 05E10, 20C30
Related articles: Most relevant | Search more
arXiv:1912.05294 [math.CO] (Published 2019-12-11)
On the symmetric Gelfand pair $(\mathcal{H}_n\times \mathcal{H}_{n-1},diag (\mathcal{H}_{n-1}))$
arXiv:2206.08925 [math.CO] (Published 2022-06-17)
The poset of Specht ideals for hyperoctahedral groups
arXiv:1504.01283 [math.CO] (Published 2015-04-06)
Character formulas and descents for the hyperoctahedral group