arXiv:1912.05294 [math.CO]AbstractReferencesReviewsResources
On the symmetric Gelfand pair $(\mathcal{H}_n\times \mathcal{H}_{n-1},diag (\mathcal{H}_{n-1}))$
Published 2019-12-11Version 1
We show that the $\mathcal{H}_{n-1}$-conjugacy classes of $\mathcal{H}_n,$ where $\mathcal{H}_n$ is the hyperoctahedral group on $2n$ elements, are indexed by marked bipartitions of $n.$ This will lead us to prove that $(\mathcal{H}_n\times \mathcal{H}_{n-1},diag (\mathcal{H}_{n-1}))$ is a symmetric Gelfand pair and that the induced representation $1_{diag (\mathcal{H}_{n-1})}^{\mathcal{H}_n\times \mathcal{H}_{n-1}}$ is multiplicity free.
Related articles: Most relevant | Search more
arXiv:math/0302203 [math.CO] (Published 2003-02-18)
The Algebra of Conjugacy Classes in Symmetric Groups and Partial Permutations
arXiv:1504.01283 [math.CO] (Published 2015-04-06)
Character formulas and descents for the hyperoctahedral group
arXiv:2206.08925 [math.CO] (Published 2022-06-17)
The poset of Specht ideals for hyperoctahedral groups