{ "id": "1912.05294", "version": "v1", "published": "2019-12-11T13:39:02.000Z", "updated": "2019-12-11T13:39:02.000Z", "title": "On the symmetric Gelfand pair $(\\mathcal{H}_n\\times \\mathcal{H}_{n-1},diag (\\mathcal{H}_{n-1}))$", "authors": [ "Omar Tout" ], "categories": [ "math.CO", "math.RT" ], "abstract": "We show that the $\\mathcal{H}_{n-1}$-conjugacy classes of $\\mathcal{H}_n,$ where $\\mathcal{H}_n$ is the hyperoctahedral group on $2n$ elements, are indexed by marked bipartitions of $n.$ This will lead us to prove that $(\\mathcal{H}_n\\times \\mathcal{H}_{n-1},diag (\\mathcal{H}_{n-1}))$ is a symmetric Gelfand pair and that the induced representation $1_{diag (\\mathcal{H}_{n-1})}^{\\mathcal{H}_n\\times \\mathcal{H}_{n-1}}$ is multiplicity free.", "revisions": [ { "version": "v1", "updated": "2019-12-11T13:39:02.000Z" } ], "analyses": { "subjects": [ "05E10", "05E15", "20C30" ], "keywords": [ "symmetric gelfand pair", "multiplicity free", "conjugacy classes", "hyperoctahedral group" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }