{ "id": "2212.13241", "version": "v1", "published": "2022-12-26T18:06:34.000Z", "updated": "2022-12-26T18:06:34.000Z", "title": "Generalized characters of the generalized symmetric group", "authors": [ "Omar Tout" ], "comment": "arXiv admin note: text overlap with arXiv:1912.05294", "categories": [ "math.CO" ], "abstract": "We prove that $(\\mathbb{Z}_k \\wr \\mathcal{S}_n \\times \\mathbb{Z}_k \\wr \\mathcal{S}_{n-1}, \\text{diag} (\\mathbb{Z}_k \\wr \\mathcal{S}_{n-1}) )$ is a symmetric Gelfand pair, where $\\mathbb{Z}_k \\wr \\mathcal{S}_n$ is the wreath product of the cyclic group $\\mathbb{Z}_k$ with the symmetric group $\\mathcal{S}_n.$ The proof is based on the study of the $\\mathbb{Z}_k \\wr \\mathcal{S}_{n-1}$-conjugacy classes of $\\mathbb{Z}_k \\wr \\mathcal{S}_n.$ We define the generalized characters of $\\mathbb{Z}_k \\wr \\mathcal{S}_n$ using the zonal spherical functions of $(\\mathbb{Z}_k \\wr \\mathcal{S}_n \\times \\mathbb{Z}_k \\wr \\mathcal{S}_{n-1}, \\text{diag} (\\mathbb{Z}_k \\wr \\mathcal{S}_{n-1}) ).$ We show that these generalized characters have properties similar to usual characters. A Murnaghan-Nakayama rule for the generalized characters of the hyperoctahedral group is presented. The generalized characters of the symmetric group were first studied by Strahov in [7].", "revisions": [ { "version": "v1", "updated": "2022-12-26T18:06:34.000Z" } ], "analyses": { "subjects": [ "05E10", "20C30" ], "keywords": [ "generalized characters", "generalized symmetric group", "symmetric gelfand pair", "cyclic group", "hyperoctahedral group" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }