arXiv Analytics

Sign in

arXiv:2211.16946 [math.AP]AbstractReferencesReviewsResources

Existence of nonnegative solutions for fractional Schrödinger equations with Neumann condition

Hamilton Bueno, Aldo H. S. Medeiros

Published 2022-11-30Version 1

In this paper we study a Neumann problem for the fractional Laplacian, namely \begin{equation}\left\{ \begin{array}{rcll} \varepsilon^{2s}(- \Delta)^{s}u + u &=& f(u) \ \ &\mbox{in} \ \ \Omega \\ \mathcal{N}_{s}u &=& 0 , \,\, &\text{in} \,\, \mathbb{R}^{N}\backslash \Omega \end{array}\right. \end{equation} where $\Omega \subset \mathbb{R}^{N}$ is a smooth bounded domain, $N>2s$, $s \in (0,1)$, $\varepsilon > 0$ is a parameter and $\mathcal{N}_{s}$ is the nonlocal normal derivative introduced by Dipierro, Ros-Oton, and Valdinoci. We establish the existence of a nonnegative, non-constant small energy solution $u_{\varepsilon}$, and we use the Moser-Nash iteration procedure to show that $u_{\varepsilon} \in L^{\infty}(\Omega)$.

Related articles: Most relevant | Search more
arXiv:2010.12538 [math.AP] (Published 2020-10-19)
Existence of infinitely many solutions for a class of fractional Schrödinger equations in $\mathbb{R}^N$ with combined nonlinearities
arXiv:1706.02497 [math.AP] (Published 2017-06-08)
Ground state solutions of fractional Schrödinger equations with potentials and weak monotonicity condition on the nonlinear term
arXiv:1907.11455 [math.AP] (Published 2019-07-26)
Non-local to local transition for ground states of fractional Schrödinger equations on bounded domains