{ "id": "2211.16946", "version": "v1", "published": "2022-11-30T12:44:37.000Z", "updated": "2022-11-30T12:44:37.000Z", "title": "Existence of nonnegative solutions for fractional Schrödinger equations with Neumann condition", "authors": [ "Hamilton Bueno", "Aldo H. S. Medeiros" ], "comment": "15 pages", "categories": [ "math.AP" ], "abstract": "In this paper we study a Neumann problem for the fractional Laplacian, namely \\begin{equation}\\left\\{ \\begin{array}{rcll} \\varepsilon^{2s}(- \\Delta)^{s}u + u &=& f(u) \\ \\ &\\mbox{in} \\ \\ \\Omega \\\\ \\mathcal{N}_{s}u &=& 0 , \\,\\, &\\text{in} \\,\\, \\mathbb{R}^{N}\\backslash \\Omega \\end{array}\\right. \\end{equation} where $\\Omega \\subset \\mathbb{R}^{N}$ is a smooth bounded domain, $N>2s$, $s \\in (0,1)$, $\\varepsilon > 0$ is a parameter and $\\mathcal{N}_{s}$ is the nonlocal normal derivative introduced by Dipierro, Ros-Oton, and Valdinoci. We establish the existence of a nonnegative, non-constant small energy solution $u_{\\varepsilon}$, and we use the Moser-Nash iteration procedure to show that $u_{\\varepsilon} \\in L^{\\infty}(\\Omega)$.", "revisions": [ { "version": "v1", "updated": "2022-11-30T12:44:37.000Z" } ], "analyses": { "subjects": [ "35R11", "35A01", "35B45" ], "keywords": [ "fractional schrödinger equations", "neumann condition", "nonnegative solutions", "non-constant small energy solution", "moser-nash iteration procedure" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }