arXiv Analytics

Sign in

arXiv:1907.11455 [math.AP]AbstractReferencesReviewsResources

Non-local to local transition for ground states of fractional Schrödinger equations on bounded domains

Bartosz Bieganowski, Simone Secchi

Published 2019-07-26Version 1

We show that ground state solutions to the nonlinear, fractional problem \begin{align*} \left\{ \begin{array}{ll} (-\Delta)^{s} u + V(x) u = f(x,u) &\quad \mathrm{in} \ \Omega, \newline u = 0 &\quad \mathrm{in} \ \mathbb{R}^N \setminus \Omega, \end{array} \right. \end{align*} on a bounded domain $\Omega \subset \mathbb{R}^N$, converge (along a subsequence) in $L^2 (\Omega)$, under suitable conditions on $f$ and $V$, to a solution of the local problem as $s \to 1^-$.

Related articles: Most relevant | Search more
arXiv:1708.00660 [math.AP] (Published 2017-08-02)
Porous medium equation with nonlocal pressure in a bounded domain
arXiv:1210.4362 [math.AP] (Published 2012-10-16, updated 2013-01-04)
On the cubic NLS on 3D compact domains
arXiv:1702.04327 [math.AP] (Published 2017-02-14)
The Biot-Savart operator of a bounded domain