{ "id": "1907.11455", "version": "v1", "published": "2019-07-26T09:34:54.000Z", "updated": "2019-07-26T09:34:54.000Z", "title": "Non-local to local transition for ground states of fractional Schrödinger equations on bounded domains", "authors": [ "Bartosz Bieganowski", "Simone Secchi" ], "categories": [ "math.AP" ], "abstract": "We show that ground state solutions to the nonlinear, fractional problem \\begin{align*} \\left\\{ \\begin{array}{ll} (-\\Delta)^{s} u + V(x) u = f(x,u) &\\quad \\mathrm{in} \\ \\Omega, \\newline u = 0 &\\quad \\mathrm{in} \\ \\mathbb{R}^N \\setminus \\Omega, \\end{array} \\right. \\end{align*} on a bounded domain $\\Omega \\subset \\mathbb{R}^N$, converge (along a subsequence) in $L^2 (\\Omega)$, under suitable conditions on $f$ and $V$, to a solution of the local problem as $s \\to 1^-$.", "revisions": [ { "version": "v1", "updated": "2019-07-26T09:34:54.000Z" } ], "analyses": { "subjects": [ "35Q55", "35A15", "35R11" ], "keywords": [ "fractional schrödinger equations", "bounded domain", "local transition", "ground state solutions", "local problem" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }