arXiv Analytics

Sign in

arXiv:2204.10132 [math.NT]AbstractReferencesReviewsResources

Supercongruences for sums involving $\binom ak^m$

Zhi-Hong Sun

Published 2022-04-21Version 1

Let $p$ be an odd prime, and let $a$ be a rational $p$-adic integer with $a\not\equiv 0\pmod p$. In this paper, using WZ method we establish the congruences for $\sum_{k=0}^{p-1} \binom ak^2(-1)^k(1-\frac 2ak)$ modulo $p^2$ and $\sum_{k=0}^{p-1} \binom ak^r(1-\frac 2ak)^s$ modulo $p^4$, where $r\in\{3,4\}$ and $s\in\{1,3\}$.

Comments: 34 pages
Categories: math.NT, math.CO
Subjects: 11A07, 05A19, 11B65, 11B68, 11E25
Related articles: Most relevant | Search more
arXiv:1210.5237 [math.NT] (Published 2012-10-18, updated 2015-06-08)
Determining $x$ or $y$ mod $p^2$ with $p=x^2+dy^2$
arXiv:1401.5978 [math.NT] (Published 2014-01-23, updated 2014-08-03)
Some q-analogues of supercongruences of Rodriguez-Villegas
arXiv:0911.2415 [math.NT] (Published 2009-11-12, updated 2011-08-02)
On congruences related to central binomial coefficients