arXiv:2204.10132 [math.NT]AbstractReferencesReviewsResources
Supercongruences for sums involving $\binom ak^m$
Published 2022-04-21Version 1
Let $p$ be an odd prime, and let $a$ be a rational $p$-adic integer with $a\not\equiv 0\pmod p$. In this paper, using WZ method we establish the congruences for $\sum_{k=0}^{p-1} \binom ak^2(-1)^k(1-\frac 2ak)$ modulo $p^2$ and $\sum_{k=0}^{p-1} \binom ak^r(1-\frac 2ak)^s$ modulo $p^4$, where $r\in\{3,4\}$ and $s\in\{1,3\}$.
Comments: 34 pages
Related articles: Most relevant | Search more
Determining $x$ or $y$ mod $p^2$ with $p=x^2+dy^2$
Some q-analogues of supercongruences of Rodriguez-Villegas
On congruences related to central binomial coefficients