{ "id": "2204.10132", "version": "v1", "published": "2022-04-21T14:35:41.000Z", "updated": "2022-04-21T14:35:41.000Z", "title": "Supercongruences for sums involving $\\binom ak^m$", "authors": [ "Zhi-Hong Sun" ], "comment": "34 pages", "categories": [ "math.NT", "math.CO" ], "abstract": "Let $p$ be an odd prime, and let $a$ be a rational $p$-adic integer with $a\\not\\equiv 0\\pmod p$. In this paper, using WZ method we establish the congruences for $\\sum_{k=0}^{p-1} \\binom ak^2(-1)^k(1-\\frac 2ak)$ modulo $p^2$ and $\\sum_{k=0}^{p-1} \\binom ak^r(1-\\frac 2ak)^s$ modulo $p^4$, where $r\\in\\{3,4\\}$ and $s\\in\\{1,3\\}$.", "revisions": [ { "version": "v1", "updated": "2022-04-21T14:35:41.000Z" } ], "analyses": { "subjects": [ "11A07", "05A19", "11B65", "11B68", "11E25" ], "keywords": [ "supercongruences", "wz method", "odd prime" ], "note": { "typesetting": "TeX", "pages": 34, "language": "en", "license": "arXiv", "status": "editable" } } }