arXiv:1401.5978 [math.NT]AbstractReferencesReviewsResources
Some q-analogues of supercongruences of Rodriguez-Villegas
Published 2014-01-23, updated 2014-08-03Version 2
We study different q-analogues and generalizations of the ex-conjectures of Rodriguez-Villegas. For example, for any odd prime p, we show that the known congruence \sum_{k=0}^{p-1}\frac{{2k\choose k}^2}{16^k} \equiv (-1)^{\frac{p-1}{2}}\pmod{p^2} has the following two nice q-analogues with [p]=1+q+...+q^{p-1}: \sum_{k=0}^{p-1}\frac{(q;q^2)_k^2}{(q^2;q^2)_k^2}q^{(1+\varepsilon)k} &\equiv (-1)^{\frac{p-1}{2}}q^{\frac{(p^2-1)\varepsilon}{4}}\pmod{[p]^2}, where (a;q)_0=1, (a;q)_n=(1-a)(1-aq)...(1-aq^{n-1}) for n=1,2,..., and \varepsilon=\pm1. Several related conjectures are also proposed.
Comments: 14 pages, to appear in J. Number Theory
Tags: journal article
Related articles: Most relevant | Search more
On sums of binomial coefficients modulo p^2
On congruences related to central binomial coefficients
Binomial coefficients, Catalan numbers and Lucas quotients