arXiv:0910.5667 [math.NT]AbstractReferencesReviewsResources
On sums of binomial coefficients modulo p^2
Published 2009-10-29, updated 2010-06-15Version 6
Let p be an odd prime and let a be a positive integer. In this paper we investigate the sum $\sum_{k=0}^{p^a-1}\binom{hp^a-1}{k}\binom{2k}{k}/m^k$ mod p^2, where h,m are p-adic integers with m\not=0 (mod p). For example, we show that if h\not=0 (mod p) and p^a>3 then $$ sum_{k=0}^{p^a-1}\binom{hp^a-1}{k}\binom{2k}{k}(-h/2)^k =(\frac{1-2h}{p^a})(1+h((4h-2)^{p-1}/h^{p-1}-1)) (mod p^2),$$ where (-) denotes the Jacobi symbol. Here is another remarkable congruence: If p>3 then $$\sum_{k=0}^{p^a-1}\binom{p^a-1}{k}\binom{2k}{k}(-1)^k =3^{p-1}(\frac{p^a}3) (mod p^2).$$
Comments: 13 pages, polished version
Related articles: Most relevant | Search more
Binomial coefficients, Catalan numbers and Lucas quotients
arXiv:1511.07221 [math.NT] (Published 2015-11-23)
On sums of binomial coefficients modulo $p^2$
On congruences related to central binomial coefficients