arXiv Analytics

Sign in

arXiv:0910.5667 [math.NT]AbstractReferencesReviewsResources

On sums of binomial coefficients modulo p^2

Zhi-Wei Sun

Published 2009-10-29, updated 2010-06-15Version 6

Let p be an odd prime and let a be a positive integer. In this paper we investigate the sum $\sum_{k=0}^{p^a-1}\binom{hp^a-1}{k}\binom{2k}{k}/m^k$ mod p^2, where h,m are p-adic integers with m\not=0 (mod p). For example, we show that if h\not=0 (mod p) and p^a>3 then $$ sum_{k=0}^{p^a-1}\binom{hp^a-1}{k}\binom{2k}{k}(-h/2)^k =(\frac{1-2h}{p^a})(1+h((4h-2)^{p-1}/h^{p-1}-1)) (mod p^2),$$ where (-) denotes the Jacobi symbol. Here is another remarkable congruence: If p>3 then $$\sum_{k=0}^{p^a-1}\binom{p^a-1}{k}\binom{2k}{k}(-1)^k =3^{p-1}(\frac{p^a}3) (mod p^2).$$

Comments: 13 pages, polished version
Categories: math.NT, math.CO
Subjects: 11B65, 05A10, 11A07, 11S99
Related articles: Most relevant | Search more
arXiv:0909.5648 [math.NT] (Published 2009-09-30, updated 2016-02-15)
Binomial coefficients, Catalan numbers and Lucas quotients
arXiv:1511.07221 [math.NT] (Published 2015-11-23)
On sums of binomial coefficients modulo $p^2$
arXiv:0911.2415 [math.NT] (Published 2009-11-12, updated 2011-08-02)
On congruences related to central binomial coefficients