{ "id": "0910.5667", "version": "v6", "published": "2009-10-29T15:56:06.000Z", "updated": "2010-06-15T06:49:28.000Z", "title": "On sums of binomial coefficients modulo p^2", "authors": [ "Zhi-Wei Sun" ], "comment": "13 pages, polished version", "categories": [ "math.NT", "math.CO" ], "abstract": "Let p be an odd prime and let a be a positive integer. In this paper we investigate the sum $\\sum_{k=0}^{p^a-1}\\binom{hp^a-1}{k}\\binom{2k}{k}/m^k$ mod p^2, where h,m are p-adic integers with m\\not=0 (mod p). For example, we show that if h\\not=0 (mod p) and p^a>3 then $$ sum_{k=0}^{p^a-1}\\binom{hp^a-1}{k}\\binom{2k}{k}(-h/2)^k =(\\frac{1-2h}{p^a})(1+h((4h-2)^{p-1}/h^{p-1}-1)) (mod p^2),$$ where (-) denotes the Jacobi symbol. Here is another remarkable congruence: If p>3 then $$\\sum_{k=0}^{p^a-1}\\binom{p^a-1}{k}\\binom{2k}{k}(-1)^k =3^{p-1}(\\frac{p^a}3) (mod p^2).$$", "revisions": [ { "version": "v6", "updated": "2010-06-15T06:49:28.000Z" } ], "analyses": { "subjects": [ "11B65", "05A10", "11A07", "11S99" ], "keywords": [ "binomial coefficients modulo", "jacobi symbol", "odd prime", "p-adic integers", "positive integer" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0910.5667S" } } }