{ "id": "1401.5978", "version": "v2", "published": "2014-01-23T14:06:26.000Z", "updated": "2014-08-03T14:46:59.000Z", "title": "Some q-analogues of supercongruences of Rodriguez-Villegas", "authors": [ "Victor J. W. Guo", "Jiang Zeng" ], "comment": "14 pages, to appear in J. Number Theory", "doi": "10.1016/j.jnt.2014.06.002", "categories": [ "math.NT", "math.CO" ], "abstract": "We study different q-analogues and generalizations of the ex-conjectures of Rodriguez-Villegas. For example, for any odd prime p, we show that the known congruence \\sum_{k=0}^{p-1}\\frac{{2k\\choose k}^2}{16^k} \\equiv (-1)^{\\frac{p-1}{2}}\\pmod{p^2} has the following two nice q-analogues with [p]=1+q+...+q^{p-1}: \\sum_{k=0}^{p-1}\\frac{(q;q^2)_k^2}{(q^2;q^2)_k^2}q^{(1+\\varepsilon)k} &\\equiv (-1)^{\\frac{p-1}{2}}q^{\\frac{(p^2-1)\\varepsilon}{4}}\\pmod{[p]^2}, where (a;q)_0=1, (a;q)_n=(1-a)(1-aq)...(1-aq^{n-1}) for n=1,2,..., and \\varepsilon=\\pm1. Several related conjectures are also proposed.", "revisions": [ { "version": "v2", "updated": "2014-08-03T14:46:59.000Z" } ], "analyses": { "subjects": [ "11B65", "05A10", "05A30" ], "keywords": [ "rodriguez-villegas", "supercongruences", "odd prime" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1401.5978G" } } }