arXiv:2203.14394 [math.PR]AbstractReferencesReviewsResources
Tightness for Thick Points in two dimensions
Published 2022-03-27Version 1
Let $W_{t}$ be Brownian motion in the plane started at the origin and let $ \theta$ be the first exit time of the unit disk $D_{1}$. Let \[\mu_{ \theta } ( x,\epsilon) =\frac{1}{\pi\epsilon^{ 2} }\int_{0}^{ \theta }1_{\{ B( x,\epsilon)\}}( W_{t})\,dt,\] and set $\mu^{ \ast}_{ \theta } (\epsilon)=\sup_{x\in D_{1}}\mu_{ \theta } ( x,\epsilon)$. We show that \[\sqrt{\mu^{\ast}_{\theta} (\epsilon)}-\sqrt{2/\pi} \left(\log \epsilon^{-1}- \frac{1}{2}\log\log \epsilon^{-1}\right)\] is tight.
Related articles: Most relevant | Search more
arXiv:math/0502057 [math.PR] (Published 2005-02-02)
A Sharp Inequality for Conditional Distribution of the First Exit Time of Brownian Motion
arXiv:0801.2959 [math.PR] (Published 2008-01-18)
On Besov regularity of Brownian motions in infinite dimensions
arXiv:math/0601632 [math.PR] (Published 2006-01-26)
Configurations of balls in Euclidean space that Brownian motion cannot avoid