{ "id": "2203.14394", "version": "v1", "published": "2022-03-27T21:07:03.000Z", "updated": "2022-03-27T21:07:03.000Z", "title": "Tightness for Thick Points in two dimensions", "authors": [ "Jay Rosen" ], "categories": [ "math.PR" ], "abstract": "Let $W_{t}$ be Brownian motion in the plane started at the origin and let $ \\theta$ be the first exit time of the unit disk $D_{1}$. Let \\[\\mu_{ \\theta } ( x,\\epsilon) =\\frac{1}{\\pi\\epsilon^{ 2} }\\int_{0}^{ \\theta }1_{\\{ B( x,\\epsilon)\\}}( W_{t})\\,dt,\\] and set $\\mu^{ \\ast}_{ \\theta } (\\epsilon)=\\sup_{x\\in D_{1}}\\mu_{ \\theta } ( x,\\epsilon)$. We show that \\[\\sqrt{\\mu^{\\ast}_{\\theta} (\\epsilon)}-\\sqrt{2/\\pi} \\left(\\log \\epsilon^{-1}- \\frac{1}{2}\\log\\log \\epsilon^{-1}\\right)\\] is tight.", "revisions": [ { "version": "v1", "updated": "2022-03-27T21:07:03.000Z" } ], "analyses": { "subjects": [ "60J65" ], "keywords": [ "thick points", "dimensions", "first exit time", "brownian motion", "unit disk" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }