arXiv Analytics

Sign in

arXiv:math/0601632 [math.PR]AbstractReferencesReviewsResources

Configurations of balls in Euclidean space that Brownian motion cannot avoid

Tom Carroll, Joaquim Ortega-Cerdà

Published 2006-01-26Version 1

We consider a collection of balls in Euclidean space and the problem of determining if Brownian motion has a positive probability of avoiding all the balls

Journal: Ann. Acad. Sci. Fenn. Math. 32 (2007), no. 1, 223--234.
Categories: math.PR
Subjects: 31B05, 60J65
Related articles: Most relevant | Search more
arXiv:0801.2959 [math.PR] (Published 2008-01-18)
On Besov regularity of Brownian motions in infinite dimensions
arXiv:0802.1152 [math.PR] (Published 2008-02-08, updated 2009-12-09)
Hiding a drift
arXiv:math/0308193 [math.PR] (Published 2003-08-20)
A central limit theorem for Gibbs measures relative to Brownian motion