arXiv:2203.08661 [math.FA]AbstractReferencesReviewsResources
Another approach to weighted inequalities for a superposition of Copson and Hardy operators
Published 2022-03-16Version 1
In this paper, we present a solution to the inequality $$ \bigg( \int_0^{\infty} \bigg( \int_x^{\infty} \bigg( \int_0^t h \bigg)^q w(t)\,dt \bigg)^{r / q} u(x)\,ds \bigg)^{1/r}\leq C \, \bigg( \int_0^{\infty} h^p v \bigg)^{1 / p}, \quad h \in {\mathfrak M}^+(0,\infty), $$ using a combination of reduction techniques and discretization. Here $1 \le p < \infty$, $0 < q ,\, r < \infty$ and $u,\,v,\,w$ are weight functions on $(0,\infty)$.
Comments: 13 pages
Categories: math.FA
Related articles: Most relevant | Search more
arXiv:1606.06705 [math.FA] (Published 2016-06-21)
A note on weighted iterated Hardy-type inequalities
arXiv:2102.06144 [math.FA] (Published 2021-02-11)
Hardy inequalities on metric measure spaces, II: The case $p>q$
arXiv:1409.1968 [math.FA] (Published 2014-09-06)
The proof of three power-exponential inequalities