arXiv Analytics

Sign in

arXiv:1606.06705 [math.FA]AbstractReferencesReviewsResources

A note on weighted iterated Hardy-type inequalities

Rza Mustafayev

Published 2016-06-21Version 1

In this paper the inequality $$ \bigg( \int_0^{\infty} \bigg( \int_x^{\infty} \bigg( \int_t^{\infty} h \bigg)^q w(t)\,dt \bigg)^{r / q} u(x)\,ds \bigg)^{1/r}\leq C \,\int_0^{\infty} h v, \quad h \in {\mathfrak M}^+(0,\infty) $$ is characterized. Here $0 < q ,\, r < \infty$ and $u,\,v,\,w$ are weight functions on $(0,\infty)$.

Comments: 20 pages
Categories: math.FA
Subjects: 26D10, 26D15
Related articles: Most relevant | Search more
arXiv:1407.6567 [math.FA] (Published 2014-07-24)
On the extremals of the Pólya-Szegő inequality
arXiv:2102.06144 [math.FA] (Published 2021-02-11)
Hardy inequalities on metric measure spaces, II: The case $p>q$
arXiv:1409.1968 [math.FA] (Published 2014-09-06)
The proof of three power-exponential inequalities