{ "id": "2203.08661", "version": "v1", "published": "2022-03-16T14:51:45.000Z", "updated": "2022-03-16T14:51:45.000Z", "title": "Another approach to weighted inequalities for a superposition of Copson and Hardy operators", "authors": [ "Rza Mustafayev", "Merve Yılmaz" ], "comment": "13 pages", "categories": [ "math.FA" ], "abstract": "In this paper, we present a solution to the inequality $$ \\bigg( \\int_0^{\\infty} \\bigg( \\int_x^{\\infty} \\bigg( \\int_0^t h \\bigg)^q w(t)\\,dt \\bigg)^{r / q} u(x)\\,ds \\bigg)^{1/r}\\leq C \\, \\bigg( \\int_0^{\\infty} h^p v \\bigg)^{1 / p}, \\quad h \\in {\\mathfrak M}^+(0,\\infty), $$ using a combination of reduction techniques and discretization. Here $1 \\le p < \\infty$, $0 < q ,\\, r < \\infty$ and $u,\\,v,\\,w$ are weight functions on $(0,\\infty)$.", "revisions": [ { "version": "v1", "updated": "2022-03-16T14:51:45.000Z" } ], "analyses": { "subjects": [ "26D10", "26D15" ], "keywords": [ "hardy operators", "weighted inequalities", "inequality", "superposition" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }