arXiv Analytics

Sign in

arXiv:2011.14253 [math.RT]AbstractReferencesReviewsResources

PBW theory for quantum affine algebras

Masaki Kashiwara, Myungho Kim, Se-jin Oh, Euiyong Park

Published 2020-11-29Version 1

Let $U_q'(\mathfrak{g})$ be a quantum affine algebra of arbitrary type and let $\mathcal{C}_{\mathfrak{g}}$ be Hernandez-Leclerc's category. We can associate the quantum affine Schur-Weyl duality functor $F_D$ to a duality datum $D$ in $\mathcal{C}_{\mathfrak{g}}$. We introduce the notion of a strong (complete) duality datum $D$ and prove that, when $D$ is strong, the induced duality functor $F_D$ sends simple modules to simple modules and preserves the invariants $\Lambda$ and $\Lambda^\infty$ introduced by the authors. We next define the reflections $\mathcal{S}_k$ and $\mathcal{S}^{-1}_k$ acting on strong duality data $D$. We prove that if $D$ is a strong (resp.\ complete) duality datum, then $\mathcal{S}_k(D)$ and $\mathcal{S}_k^{-1}(D)$ are also strong (resp.\ complete ) duality data. We finally introduce the notion of affine cuspidal modules in $\mathcal{C}_{\mathfrak{g}}$ by using the duality functor $F_D$, and develop the cuspidal module theory for quantum affine algebras similarly to the quiver Hecke algebra case.

Comments: 63 pages. This is a full paper of the announcement: PBW theoretic approach to the module category of quantum affine algebras, arXiv:2005.04838v2
Categories: math.RT, math.QA
Subjects: 17B37, 81R50, 18D10
Related articles: Most relevant | Search more
arXiv:2005.04838 [math.RT] (Published 2020-05-11)
PBW theoretic approach to the module category of quantum affine algebras
arXiv:1710.06627 [math.RT] (Published 2017-10-18)
Monoidal categories of modules over quantum affine algebras of type A and B
arXiv:2203.16503 [math.RT] (Published 2022-03-30)
Rational K-matrices for finite-dimensional representations of quantum affine algebras