arXiv:2011.14253 [math.RT]AbstractReferencesReviewsResources
PBW theory for quantum affine algebras
Masaki Kashiwara, Myungho Kim, Se-jin Oh, Euiyong Park
Published 2020-11-29Version 1
Let $U_q'(\mathfrak{g})$ be a quantum affine algebra of arbitrary type and let $\mathcal{C}_{\mathfrak{g}}$ be Hernandez-Leclerc's category. We can associate the quantum affine Schur-Weyl duality functor $F_D$ to a duality datum $D$ in $\mathcal{C}_{\mathfrak{g}}$. We introduce the notion of a strong (complete) duality datum $D$ and prove that, when $D$ is strong, the induced duality functor $F_D$ sends simple modules to simple modules and preserves the invariants $\Lambda$ and $\Lambda^\infty$ introduced by the authors. We next define the reflections $\mathcal{S}_k$ and $\mathcal{S}^{-1}_k$ acting on strong duality data $D$. We prove that if $D$ is a strong (resp.\ complete) duality datum, then $\mathcal{S}_k(D)$ and $\mathcal{S}_k^{-1}(D)$ are also strong (resp.\ complete ) duality data. We finally introduce the notion of affine cuspidal modules in $\mathcal{C}_{\mathfrak{g}}$ by using the duality functor $F_D$, and develop the cuspidal module theory for quantum affine algebras similarly to the quiver Hecke algebra case.