{ "id": "2011.14253", "version": "v1", "published": "2020-11-29T01:55:58.000Z", "updated": "2020-11-29T01:55:58.000Z", "title": "PBW theory for quantum affine algebras", "authors": [ "Masaki Kashiwara", "Myungho Kim", "Se-jin Oh", "Euiyong Park" ], "comment": "63 pages. This is a full paper of the announcement: PBW theoretic approach to the module category of quantum affine algebras, arXiv:2005.04838v2", "categories": [ "math.RT", "math.QA" ], "abstract": "Let $U_q'(\\mathfrak{g})$ be a quantum affine algebra of arbitrary type and let $\\mathcal{C}_{\\mathfrak{g}}$ be Hernandez-Leclerc's category. We can associate the quantum affine Schur-Weyl duality functor $F_D$ to a duality datum $D$ in $\\mathcal{C}_{\\mathfrak{g}}$. We introduce the notion of a strong (complete) duality datum $D$ and prove that, when $D$ is strong, the induced duality functor $F_D$ sends simple modules to simple modules and preserves the invariants $\\Lambda$ and $\\Lambda^\\infty$ introduced by the authors. We next define the reflections $\\mathcal{S}_k$ and $\\mathcal{S}^{-1}_k$ acting on strong duality data $D$. We prove that if $D$ is a strong (resp.\\ complete) duality datum, then $\\mathcal{S}_k(D)$ and $\\mathcal{S}_k^{-1}(D)$ are also strong (resp.\\ complete ) duality data. We finally introduce the notion of affine cuspidal modules in $\\mathcal{C}_{\\mathfrak{g}}$ by using the duality functor $F_D$, and develop the cuspidal module theory for quantum affine algebras similarly to the quiver Hecke algebra case.", "revisions": [ { "version": "v1", "updated": "2020-11-29T01:55:58.000Z" } ], "analyses": { "subjects": [ "17B37", "81R50", "18D10" ], "keywords": [ "quantum affine algebra", "duality datum", "pbw theory", "quantum affine schur-weyl duality functor", "cuspidal module" ], "note": { "typesetting": "TeX", "pages": 63, "language": "en", "license": "arXiv", "status": "editable" } } }