arXiv Analytics

Sign in

arXiv:2005.04838 [math.RT]AbstractReferencesReviewsResources

PBW theoretic approach to the module category of quantum affine algebras

Masaki Kashiwara, Myungho Kim, Se-jin Park, Euiyong Park

Published 2020-05-11Version 1

Let $U_q'(\mathfrak{g})$ be a quantum affine algebra of untwisted affine ADE type and let $\mathcal{C}^0_{\mathfrak{g}}$ be Hernandez-Leclerc's category. For a duality datum $\mathcal{D}$ in $\mathcal{C}^0_{\mathfrak{g}}$, we denote by $\mathcal{F}_{\mathcal{D}}$ the quantum affine Weyl-Schur duality functor. We give sufficient conditions for a duality datum $\mathcal{D}$ to provide the functor $\mathcal{F}_{\mathcal{D}}$ sending simple modules to simple modules. Then we introduce the notion of cuspidal modules in $\mathcal{C}^0_{\mathfrak{g}}$, and show that all simple modules in $\mathcal{C}^0_{\mathfrak{g}}$ can be constructed as the heads of ordered tensor products of cuspidal modules.

Comments: 9 pages. This is an announcement paper whose details will appear elsewhere
Categories: math.RT, math.QA
Subjects: 17B37, 81R50, 18D10
Related articles: Most relevant | Search more
arXiv:2011.14253 [math.RT] (Published 2020-11-29)
PBW theory for quantum affine algebras
arXiv:1710.06627 [math.RT] (Published 2017-10-18)
Monoidal categories of modules over quantum affine algebras of type A and B
arXiv:2203.16503 [math.RT] (Published 2022-03-30)
Rational K-matrices for finite-dimensional representations of quantum affine algebras