arXiv:2005.04838 [math.RT]AbstractReferencesReviewsResources
PBW theoretic approach to the module category of quantum affine algebras
Masaki Kashiwara, Myungho Kim, Se-jin Park, Euiyong Park
Published 2020-05-11Version 1
Let $U_q'(\mathfrak{g})$ be a quantum affine algebra of untwisted affine ADE type and let $\mathcal{C}^0_{\mathfrak{g}}$ be Hernandez-Leclerc's category. For a duality datum $\mathcal{D}$ in $\mathcal{C}^0_{\mathfrak{g}}$, we denote by $\mathcal{F}_{\mathcal{D}}$ the quantum affine Weyl-Schur duality functor. We give sufficient conditions for a duality datum $\mathcal{D}$ to provide the functor $\mathcal{F}_{\mathcal{D}}$ sending simple modules to simple modules. Then we introduce the notion of cuspidal modules in $\mathcal{C}^0_{\mathfrak{g}}$, and show that all simple modules in $\mathcal{C}^0_{\mathfrak{g}}$ can be constructed as the heads of ordered tensor products of cuspidal modules.