{ "id": "2005.04838", "version": "v1", "published": "2020-05-11T02:27:32.000Z", "updated": "2020-05-11T02:27:32.000Z", "title": "PBW theoretic approach to the module category of quantum affine algebras", "authors": [ "Masaki Kashiwara", "Myungho Kim", "Se-jin Park", "Euiyong Park" ], "comment": "9 pages. This is an announcement paper whose details will appear elsewhere", "categories": [ "math.RT", "math.QA" ], "abstract": "Let $U_q'(\\mathfrak{g})$ be a quantum affine algebra of untwisted affine ADE type and let $\\mathcal{C}^0_{\\mathfrak{g}}$ be Hernandez-Leclerc's category. For a duality datum $\\mathcal{D}$ in $\\mathcal{C}^0_{\\mathfrak{g}}$, we denote by $\\mathcal{F}_{\\mathcal{D}}$ the quantum affine Weyl-Schur duality functor. We give sufficient conditions for a duality datum $\\mathcal{D}$ to provide the functor $\\mathcal{F}_{\\mathcal{D}}$ sending simple modules to simple modules. Then we introduce the notion of cuspidal modules in $\\mathcal{C}^0_{\\mathfrak{g}}$, and show that all simple modules in $\\mathcal{C}^0_{\\mathfrak{g}}$ can be constructed as the heads of ordered tensor products of cuspidal modules.", "revisions": [ { "version": "v1", "updated": "2020-05-11T02:27:32.000Z" } ], "analyses": { "subjects": [ "17B37", "81R50", "18D10" ], "keywords": [ "quantum affine algebra", "pbw theoretic approach", "module category", "simple modules", "quantum affine weyl-schur duality functor" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }