arXiv Analytics

Sign in

arXiv:2011.02757 [math.NT]AbstractReferencesReviewsResources

Extension of a conjectural supercongruence of (G.3) of Swisher using Zeilberger's algorithm

Arijit Jana, Gautam Kalita

Published 2020-11-05Version 1

Using Zeilberger's algorithm, we here give a proof of the supercongruence $$ \sum_{n=0}^{\frac{p^r-3}{4}}(8n+1)\frac{\left(\frac{1}{4}\right)_n^4}{(1)_n^4}\equiv -p^3 \sum_{n=0}^{\frac{p^{r-2}-3}{4}}(8n+1)\frac{\left(\frac{1}{4}\right)_n^4}{(1)_n^4} ~~(\text{mod }p^{\frac{3r-1}{2}}),$$ for any odd integer $r>3$. This extends the third conjectural supercongruence of (G.3) of Swisher to modulo higher prime powers than that expected by Swisher.

Related articles: Most relevant | Search more
arXiv:2011.02762 [math.NT] (Published 2020-11-05)
Proof of a supercongruence conjecture of (F.3) of Swisher using the WZ-method
arXiv:math/0601026 [math.NT] (Published 2006-01-02)
A remark on Zoloterav's theorem
arXiv:2301.09263 [math.NT] (Published 2023-01-23)
On the solutions of $x^2= By^p+Cz^p$ and $2x^2= By^p+Cz^p$ over totally real fields