{ "id": "2011.02757", "version": "v1", "published": "2020-11-05T10:59:36.000Z", "updated": "2020-11-05T10:59:36.000Z", "title": "Extension of a conjectural supercongruence of (G.3) of Swisher using Zeilberger's algorithm", "authors": [ "Arijit Jana", "Gautam Kalita" ], "comment": "8 pages", "categories": [ "math.NT" ], "abstract": "Using Zeilberger's algorithm, we here give a proof of the supercongruence $$ \\sum_{n=0}^{\\frac{p^r-3}{4}}(8n+1)\\frac{\\left(\\frac{1}{4}\\right)_n^4}{(1)_n^4}\\equiv -p^3 \\sum_{n=0}^{\\frac{p^{r-2}-3}{4}}(8n+1)\\frac{\\left(\\frac{1}{4}\\right)_n^4}{(1)_n^4} ~~(\\text{mod }p^{\\frac{3r-1}{2}}),$$ for any odd integer $r>3$. This extends the third conjectural supercongruence of (G.3) of Swisher to modulo higher prime powers than that expected by Swisher.", "revisions": [ { "version": "v1", "updated": "2020-11-05T10:59:36.000Z" } ], "analyses": { "subjects": [ "11Y55", "11A07", "11B65", "40G99" ], "keywords": [ "zeilbergers algorithm", "modulo higher prime powers", "third conjectural supercongruence", "odd integer" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }