arXiv:2010.05826 [math.FA]AbstractReferencesReviewsResources
Some refinements of numerical radius inequalities
Zahra Heydarbeygi, Maryam Amyari, Mahnaz Khanehgir
Published 2020-10-12Version 1
In this paper, we give some refinements for the second inequality in $\frac{1}{2}\|A\| \leq w(A) \leq \|A\|$, where $A\in B(H)$. In particular, if $A$ is hyponormal by refining the Young inequality with the Kantorovich constant $K(\cdot, \cdot)$, we show that $w(A)\leq \dfrac{1}{\displaystyle {2\inf_{\| x \|=1}}\zeta(x)}\| |A|+|A^{*}|\|\leq \dfrac{1}{2}\| |A|+|A^*|\|$, where $\zeta(x)=K(\frac{\langle |A|x,x \rangle}{\langle |A^{*}|x,x \rangle},2)^{r},~~~r=\min\{\lambda,1-\lambda\}$ and $0\leq \lambda \leq 1$ . We also give a reverse for the classical numerical radius power inequality $w(A^{n})\leq w^{n}(A)$ for any operator $A \in B(H)$ in the case when $n=2$.