arXiv Analytics

Sign in

arXiv:2010.05826 [math.FA]AbstractReferencesReviewsResources

Some refinements of numerical radius inequalities

Zahra Heydarbeygi, Maryam Amyari, Mahnaz Khanehgir

Published 2020-10-12Version 1

In this paper, we give some refinements for the second inequality in $\frac{1}{2}\|A\| \leq w(A) \leq \|A\|$, where $A\in B(H)$. In particular, if $A$ is hyponormal by refining the Young inequality with the Kantorovich constant $K(\cdot, \cdot)$, we show that $w(A)\leq \dfrac{1}{\displaystyle {2\inf_{\| x \|=1}}\zeta(x)}\| |A|+|A^{*}|\|\leq \dfrac{1}{2}\| |A|+|A^*|\|$, where $\zeta(x)=K(\frac{\langle |A|x,x \rangle}{\langle |A^{*}|x,x \rangle},2)^{r},~~~r=\min\{\lambda,1-\lambda\}$ and $0\leq \lambda \leq 1$ . We also give a reverse for the classical numerical radius power inequality $w(A^{n})\leq w^{n}(A)$ for any operator $A \in B(H)$ in the case when $n=2$.

Related articles: Most relevant | Search more
arXiv:1810.05710 [math.FA] (Published 2018-10-12)
Numerical radius inequalities for Hilbert Space Operators
arXiv:1908.04499 [math.FA] (Published 2019-08-13)
Numerical radius inequalities for linear operators and operator matrices
arXiv:1511.02094 [math.FA] (Published 2015-11-06)
Cartesian decomposition and Numerical radius inequalities