{ "id": "2010.05826", "version": "v1", "published": "2020-10-12T16:19:47.000Z", "updated": "2020-10-12T16:19:47.000Z", "title": "Some refinements of numerical radius inequalities", "authors": [ "Zahra Heydarbeygi", "Maryam Amyari", "Mahnaz Khanehgir" ], "categories": [ "math.FA" ], "abstract": "In this paper, we give some refinements for the second inequality in $\\frac{1}{2}\\|A\\| \\leq w(A) \\leq \\|A\\|$, where $A\\in B(H)$. In particular, if $A$ is hyponormal by refining the Young inequality with the Kantorovich constant $K(\\cdot, \\cdot)$, we show that $w(A)\\leq \\dfrac{1}{\\displaystyle {2\\inf_{\\| x \\|=1}}\\zeta(x)}\\| |A|+|A^{*}|\\|\\leq \\dfrac{1}{2}\\| |A|+|A^*|\\|$, where $\\zeta(x)=K(\\frac{\\langle |A|x,x \\rangle}{\\langle |A^{*}|x,x \\rangle},2)^{r},~~~r=\\min\\{\\lambda,1-\\lambda\\}$ and $0\\leq \\lambda \\leq 1$ . We also give a reverse for the classical numerical radius power inequality $w(A^{n})\\leq w^{n}(A)$ for any operator $A \\in B(H)$ in the case when $n=2$.", "revisions": [ { "version": "v1", "updated": "2020-10-12T16:19:47.000Z" } ], "analyses": { "subjects": [ "47A12", "47A30", "47A63" ], "keywords": [ "numerical radius inequalities", "refinements", "classical numerical radius power inequality", "kantorovich constant", "second inequality" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }