arXiv Analytics

Sign in

arXiv:1511.02094 [math.FA]AbstractReferencesReviewsResources

Cartesian decomposition and Numerical radius inequalities

Fuad Kittaneh, Mohammad Sal Moslehian, Takeaki Yamazaki

Published 2015-11-06Version 1

We show that if $T=H+iK$ is the Cartesian decomposition of $T\in \mathbb{B(\mathscr{H})}$, then for $\alpha ,\beta \in \mathbb{R}$, $\sup_{\alpha ^{2}+\beta ^{2}=1}\Vert \alpha H+\beta K\Vert =w(T)$. We then apply it to prove that if $A,B,X\in \mathbb{B(\mathscr{H})}$ and $0\leq mI\leq X$, then \begin{align*} m\Vert \mbox{Re}(A)-\mbox{Re}(B)\Vert & \leq w(\mbox{Re}(A)X-X\mbox{Re}(B)) \\ & \leq \frac{1}{2}\sup_{\theta \in \mathbb{R}}\left\Vert (AX-XB)+e^{i\theta }(XA-BX)\right\Vert \\ & \leq \frac{\Vert AX-XB\Vert +\Vert XA-BX\Vert }{2}, \end{align*} where $\mbox{Re}(T)$ denotes the real part of an operator $T$. A refinement of the triangle inequality is also shown.

Comments: 8 pages, appeared in Linear Algebra Appl
Journal: Kittaneh, Fuad; Moslehian, Mohammad Sal; Yamazaki, Takeaki. Cartesian decomposition and numerical radius inequalities. Linear Algebra Appl. 471 (2015), 46--53
Categories: math.FA, math.OA
Subjects: 47A12, 47A30, 47A63, 47B47
Related articles: Most relevant | Search more
arXiv:1908.04499 [math.FA] (Published 2019-08-13)
Numerical radius inequalities for linear operators and operator matrices
arXiv:2010.05826 [math.FA] (Published 2020-10-12)
Some refinements of numerical radius inequalities
arXiv:2408.12848 [math.FA] (Published 2024-08-23)
Numerical Radius Inequalities via Orlicz function