arXiv:2009.02456 [math.CA]AbstractReferencesReviewsResources
Sparse domination and weighted estimates for rough bilinear singular integrals
Loukas Grafakos, Zhidan Wang, Qingying Xue
Published 2020-09-05Version 1
Let $r>\frac{4}{3}$ and let $\Omega \in L^{r}(\mathbb{S}^{2n-1})$ have vanishing integral. We show that the bilinear rough singular integral $$T_{\Omega}(f,g)(x)= \textrm{p.v.} \int_{\mathbb{R}^n}\int_{\mathbb{R}^n}\frac{\Omega((y,z)/|(y,z)|)}{|(y,z)|^{2n}}f(x-y)g(x-z)\,dydz,$$ satisfies a sparse bound by $(p,p,p)$-averages, where $p$ is bigger than a certain number explicitly related to $r$ and $n$. As a consequence we deduce certain quantitative weighted estimates for bilinear homogeneous singular integrals associated with rough homogeneous kernels.
Related articles: Most relevant | Search more
arXiv:2009.00336 [math.CA] (Published 2020-09-01)
A metric approach to sparse domination
arXiv:2007.15928 [math.CA] (Published 2020-07-31)
Quadratic sparse domination and Weighted Estimates for non-integral Square Functions
arXiv:1606.03340 [math.CA] (Published 2016-06-10)
Sparse domination on non-homogeneous spaces with an application to $A_p$ weights