arXiv:2007.15928 [math.CA]AbstractReferencesReviewsResources
Quadratic sparse domination and Weighted Estimates for non-integral Square Functions
Julian Bailey, Gianmarco Brocchi, Maria Carmen Reguera
Published 2020-07-31Version 1
We prove a quadratic sparse domination result for general non-integral square functions $S$. That is, we prove an estimate of the form \begin{equation*} \int_{M} (S f)^{2} g \, \mathrm{d}\mu \le c \sum_{P \in \mathcal{S}} \left(\frac{1}{\lvert 5P \rvert}\int_{5 P} \lvert f\rvert^{p_{0}} \, \mathrm{d}\mu\right)^{2/p_{0}} \left(\frac{1}{\lvert 5P \rvert} \int_{5 P} \lvert g\rvert^{q_{0}^*}\,\mathrm{d}\mu\right)^{1/q_{0}^*} \lvert P\rvert, \end{equation*} where $q_{0}^{*}$ is the H\"{o}lder conjugate of $q_{0}/2$, $M$ is the underlying doubling space and $\mathcal{S}$ is a sparse collection of cubes on $M$. Our result will cover both square functions associated with divergence form elliptic operators and those associated with the Laplace-Beltrami operator. This sparse domination allows us to derive optimal norm estimates in the weighted space $L^{p}(w)$.