arXiv Analytics

Sign in

arXiv:2007.15928 [math.CA]AbstractReferencesReviewsResources

Quadratic sparse domination and Weighted Estimates for non-integral Square Functions

Julian Bailey, Gianmarco Brocchi, Maria Carmen Reguera

Published 2020-07-31Version 1

We prove a quadratic sparse domination result for general non-integral square functions $S$. That is, we prove an estimate of the form \begin{equation*} \int_{M} (S f)^{2} g \, \mathrm{d}\mu \le c \sum_{P \in \mathcal{S}} \left(\frac{1}{\lvert 5P \rvert}\int_{5 P} \lvert f\rvert^{p_{0}} \, \mathrm{d}\mu\right)^{2/p_{0}} \left(\frac{1}{\lvert 5P \rvert} \int_{5 P} \lvert g\rvert^{q_{0}^*}\,\mathrm{d}\mu\right)^{1/q_{0}^*} \lvert P\rvert, \end{equation*} where $q_{0}^{*}$ is the H\"{o}lder conjugate of $q_{0}/2$, $M$ is the underlying doubling space and $\mathcal{S}$ is a sparse collection of cubes on $M$. Our result will cover both square functions associated with divergence form elliptic operators and those associated with the Laplace-Beltrami operator. This sparse domination allows us to derive optimal norm estimates in the weighted space $L^{p}(w)$.

Related articles: Most relevant | Search more
arXiv:1702.04790 [math.CA] (Published 2017-02-15)
Weighted Estimates for Rough Bilinear Singular Integrals via Sparse Domination
arXiv:2009.02456 [math.CA] (Published 2020-09-05)
Sparse domination and weighted estimates for rough bilinear singular integrals
arXiv:1307.5642 [math.CA] (Published 2013-07-22, updated 2013-11-29)
Optimal exponents in weighted estimates without examples