{ "id": "2007.15928", "version": "v1", "published": "2020-07-31T09:45:36.000Z", "updated": "2020-07-31T09:45:36.000Z", "title": "Quadratic sparse domination and Weighted Estimates for non-integral Square Functions", "authors": [ "Julian Bailey", "Gianmarco Brocchi", "Maria Carmen Reguera" ], "comment": "31 pages", "categories": [ "math.CA" ], "abstract": "We prove a quadratic sparse domination result for general non-integral square functions $S$. That is, we prove an estimate of the form \\begin{equation*} \\int_{M} (S f)^{2} g \\, \\mathrm{d}\\mu \\le c \\sum_{P \\in \\mathcal{S}} \\left(\\frac{1}{\\lvert 5P \\rvert}\\int_{5 P} \\lvert f\\rvert^{p_{0}} \\, \\mathrm{d}\\mu\\right)^{2/p_{0}} \\left(\\frac{1}{\\lvert 5P \\rvert} \\int_{5 P} \\lvert g\\rvert^{q_{0}^*}\\,\\mathrm{d}\\mu\\right)^{1/q_{0}^*} \\lvert P\\rvert, \\end{equation*} where $q_{0}^{*}$ is the H\\\"{o}lder conjugate of $q_{0}/2$, $M$ is the underlying doubling space and $\\mathcal{S}$ is a sparse collection of cubes on $M$. Our result will cover both square functions associated with divergence form elliptic operators and those associated with the Laplace-Beltrami operator. This sparse domination allows us to derive optimal norm estimates in the weighted space $L^{p}(w)$.", "revisions": [ { "version": "v1", "updated": "2020-07-31T09:45:36.000Z" } ], "analyses": { "subjects": [ "42B20", "42B37" ], "keywords": [ "weighted estimates", "general non-integral square functions", "quadratic sparse domination result", "divergence form elliptic operators", "derive optimal norm estimates" ], "note": { "typesetting": "TeX", "pages": 31, "language": "en", "license": "arXiv", "status": "editable" } } }