{ "id": "2009.02456", "version": "v1", "published": "2020-09-05T04:33:15.000Z", "updated": "2020-09-05T04:33:15.000Z", "title": "Sparse domination and weighted estimates for rough bilinear singular integrals", "authors": [ "Loukas Grafakos", "Zhidan Wang", "Qingying Xue" ], "comment": "22 pages", "categories": [ "math.CA" ], "abstract": "Let $r>\\frac{4}{3}$ and let $\\Omega \\in L^{r}(\\mathbb{S}^{2n-1})$ have vanishing integral. We show that the bilinear rough singular integral $$T_{\\Omega}(f,g)(x)= \\textrm{p.v.} \\int_{\\mathbb{R}^n}\\int_{\\mathbb{R}^n}\\frac{\\Omega((y,z)/|(y,z)|)}{|(y,z)|^{2n}}f(x-y)g(x-z)\\,dydz,$$ satisfies a sparse bound by $(p,p,p)$-averages, where $p$ is bigger than a certain number explicitly related to $r$ and $n$. As a consequence we deduce certain quantitative weighted estimates for bilinear homogeneous singular integrals associated with rough homogeneous kernels.", "revisions": [ { "version": "v1", "updated": "2020-09-05T04:33:15.000Z" } ], "analyses": { "subjects": [ "42B20" ], "keywords": [ "rough bilinear singular integrals", "weighted estimates", "sparse domination", "bilinear rough singular integral", "bilinear homogeneous singular integrals" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable" } } }