arXiv:2008.07374 [math.AP]AbstractReferencesReviewsResources
On stable and finite Morse index solutions of the nonlocal Hénon-Gelfand-Liouville equation
Mostafa Fazly, Yeyao Hu, Wen Yang
Published 2020-08-17Version 1
We consider the nonlocal H\'{e}non-Gelfand-Liouville problem $$ (-\Delta)^s u = |x|^a e^u\quad\mathrm{in}\quad \mathbb R^n, $$ for every $s\in(0,1)$, $a>0$ and $n>2s$. We prove a monotonicity formula for solutions of the above equation using rescaling arguments. We apply this formula together with blow-down analysis arguments and technical integral estimates to establish non-existence of finite Morse index solutions when $$\dfrac{\Gamma(\frac n2)\Gamma(s)}{\Gamma(\frac{n-2s}{2})}\left(s+\frac a2\right)> \dfrac{\Gamma^2(\frac{n+2s}{4})}{\Gamma^2(\frac{n-2s}{4})}.$$
Comments: 24 pages. Comments are welcome. arXiv admin note: text overlap with arXiv:2003.03071
Categories: math.AP
Related articles: Most relevant | Search more
arXiv:2007.00069 [math.AP] (Published 2020-06-30)
On stable and finite Morse index solutions of the fractional Toda system
arXiv:1303.4145 [math.AP] (Published 2013-03-18)
Finite Morse index solutions and asymptotics of weighted nonlinear elliptic equations
arXiv:1410.5400 [math.AP] (Published 2014-10-20)
On finite Morse index solutions of higher order fractional Lane-Emden equations