{ "id": "2008.07374", "version": "v1", "published": "2020-08-17T14:39:58.000Z", "updated": "2020-08-17T14:39:58.000Z", "title": "On stable and finite Morse index solutions of the nonlocal Hénon-Gelfand-Liouville equation", "authors": [ "Mostafa Fazly", "Yeyao Hu", "Wen Yang" ], "comment": "24 pages. Comments are welcome. arXiv admin note: text overlap with arXiv:2003.03071", "categories": [ "math.AP" ], "abstract": "We consider the nonlocal H\\'{e}non-Gelfand-Liouville problem $$ (-\\Delta)^s u = |x|^a e^u\\quad\\mathrm{in}\\quad \\mathbb R^n, $$ for every $s\\in(0,1)$, $a>0$ and $n>2s$. We prove a monotonicity formula for solutions of the above equation using rescaling arguments. We apply this formula together with blow-down analysis arguments and technical integral estimates to establish non-existence of finite Morse index solutions when $$\\dfrac{\\Gamma(\\frac n2)\\Gamma(s)}{\\Gamma(\\frac{n-2s}{2})}\\left(s+\\frac a2\\right)> \\dfrac{\\Gamma^2(\\frac{n+2s}{4})}{\\Gamma^2(\\frac{n-2s}{4})}.$$", "revisions": [ { "version": "v1", "updated": "2020-08-17T14:39:58.000Z" } ], "analyses": { "keywords": [ "finite morse index solutions", "nonlocal hénon-gelfand-liouville equation", "blow-down analysis arguments", "monotonicity formula", "technical integral estimates" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable" } } }